
A disorder solution for a generalised mixed-spin model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

1987 J. Phys. A: Math. Gen. 20 L1207

(http://iopscience.iop.org/0305-4470/20/17/013)

Download details:

IP Address: 129.252.86.83

The article was downloaded on 01/06/2010 at 16:14

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/20/17
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


J. Phys. A: Math. Gen. 20 (1987)  L1207-Ll209. Printed in the UK 

LE'ITER TO THE EDITOR 

A disorder solution for a generalised mixed-spin model 

Kun-Fa Tang and Jia-Zhen Hu 
Department of Physics, Institute of Condensed Matter Physics, Shanghai Jiao Tong 
University, Shanghai 200030, China 
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Abstract. A generalised mixed-spin model on a checkerboard square lattice is solved exactly 
along a trajectory in the parameter space by the use of an exact decimation method. A 
closed-form expression of the free energy per site is obtained and a criterion determining 
the validity of the solution is established. 

In recent years, much interest has been devoted to the study of disorder solutions for 
a number of models, e.g., two-dimensional anisotropic Ising and Potts models with a 
field (Rujan 1984, Baxter 1984, Jaekel and Maillard 1985b, Wu 1985), three-dimensional 
Ising model (Welberry and Miller 1978, Jaekel and Maillard 1985a) and the general 
eight-vertex model (Giacomini 1986). So far, three methods, the statistical theory of 
Markov processes, the transfer-matrix technique of statistical mechanics and the exact 
decimation procedure, have been used for obtaining disorder solutions. The solutions 
provide very useful information, including constraints on the analytical behaviour of 
the partition function, an infinite number of n-point correlation functions and many 
other quantities such as susceptibility at the disorder variety. Moreover, Georges e? 
a/ (1986) have recently shown that it is also possible to obtain information in the 
vicinity of disorder solutions through a new type of perturbative expansion. 

In this letter, the exact decimation method, as used by Jaekel and Maillard and by 
Wu, is applied to the generalised mixed-spin (GMS)  model (Tang and Hu 1986) which, 
composed of two interpenetrating sublattices occupied by spin f and spin 1 respectively, 
contains the pure Ising model, the mixed-spin ( M S )  model (Schofield and Bowers 1980) 
and a particular site-diluted lsing model (vacancy only occupies one sublattice) as 
special cases. In spite of its lower translational symmetry, it has been shown that the 
GMS model exhibits an Ising transition (Tang and Hu 1986). The GMS model can be 
solved exactly on the honeycomb lattice, by transforming it into a triangular Ising 
model with nearest-neighbour interactions via star-triangle relation, but cannot on the 
square lattice. Therefore, it is not without interest to seek the disorder solution for 
the square-lattice G M S  model. 

Consider the GMS model on a general checkerboard square lattice, shown in figure 
1, of 2 N  sites with the Hamiltonian 

X{ U, S }  = ( - J ,  U I  S2 - J 2 ~ 3 S 2  - J3a3S4 - J4aI S4) - G 1 Sf (1) 

where U = if and S = 0, *l ,  the summation Zm is taken over all shaded square faces 
of the lattice and each shaded square is bordered by interactions -JI , -Jz, -J3 and 
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Figure I .  General checkerboard lattic,e with periodic condition in the horizontal direction. 
The G M S  model consists of spin-1 and spin-; Ising objects, which are indicated by open 
circles (3) and crosses ( x )  respectively. Each shaded square is bordered by interactions 
- J , ,  - J z ,  - J 3 ,  and - J 4 .  

-J4  (cf figure 1 ) .  The free energy per site is 

where 2 is the partition function defined by (1). 
To perform the decimation procedure, a periodic boundary condition is imposed 

in the horizontal direction and the Hamiltonian ( 1 )  is modified by changing the 
parameters G and J ,  associated with the spins located on the upper boundary to new 
values G' and 0 respectively. The modified Hamiltonian will have the same bulk free 
energy as the original one provided that G' and J ,  are real, which is a sufficient 
condition as pointed out by Chao and Wu (1985). We carry out the spin sums over 
the first row of spins in figure 1 with the modified Hamiltonian and require 

exp(A'S:+ K , a i S 2 +  K,a;S,+ K3ajS,+ K4aiS,) = Fexp(A*S:) (3)  

where K, = iJ,/kT, A ' =  G'/kT,  A* = G*/kT  and a: = 2a ,  = i.1. The remaining lattice 
is an exact copy of the original one except that i t  has one less row and the parameter 
G associated with the new boundary spins takes the value G + G*.  If we require further 

GI= G + G *  (4) 

then the decimation process can be performed continually by summing the new 
boundary spins. Finally, all the spins are decimated except those in the last row, 
which, giving rise to a positive factor, can be neglected in the bulk limit. Since each 
decimated square contributes a factor F to the partition function, we finally obtain 
from (2)  and  (3) the solution 

f = ( F ) ' "  

= { 2 [ 2  exp(A')cosh K3 cosh K4] + 1}1'2 ( 5 )  

and 

sinh K,  cosh K2 
cosh(K,- K,)sinh ( K 3 -  K , ) - cosh (K, -K , ) s inh (K, -  K , )  exp(A') = ( 6 )  
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which is valid along the trajectory 

exp(A) = exp(A‘)[2 exp(A’) cosh K 3  cosh K4+ l]/exp(Kl){exp(A’)[exp(K,) 

x cosh( K4 + K , )  + exp( - K , )  cosh( K Z  - K4)] + cosh K , }  (7)  

and confined to the regions 

and 

where TD is the temperature defined by 

The conditions (8)-( 10) derived from the requirement that G’ is real indicate that the 
decimations must be used with care and that it is valid only when carried out along 
one preferred lattice direction as in the case of a triangular Ising model in a non-zero 
magnetic field considered by Wu (1985). 

It is interesting to see the case of T =  TD. It follows from ( 6 ) ,  (8), (9) and (11) 
that G becomes infinite when T = TD, and hence the GMS model reduces to a checker- 
board Ising model, which is the case of q = 2  of the corresponding Potts model 
considered by Jaekel and Maillard (1984), and Baxter (1984). After eliminating an 
infinite factor exp(A), we have 

f =  {2[~0sh(  K ,  + K4) cosh( K ,  + K3)  + cosh( K2 - K4)  cosh( K1- K3)]}”2 (12) 

which can be easily shown to be equivalent to Jaekel and Maillard’s equation (5) and 
Baxter’s equation (32) with 9 = 2. 

In  summary, a disorder solution has been obtained for the G M S  model on a 
checkerboard lattice and the constraints imposed by validity conditions of the decima- 
tion method on the interactions are discussed. The solution, given by (5) and (6), is 
valid under the conditions (8)-( 10) and reduces to that of the Ising model when T = TD. 
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